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Abstract

We present a hybrid MT architecture, combin-
ing state-of-the-art linguistic processing with
advanced stochastic techniques. Grounded in
a theoretical reflection on the division of labor
between rule-based and probabilistic elements
in the MT task, we summarize per-component
approaches to ranking, including empirical re-
sults when evaluated in isolation. Combining
component-internal scores and a number of ad-
ditional sources of (probabilistic) information,
we explore discriminative re-ranking of-best
lists of candidate translations through an eclectic
combination of knowledge sources, and provide
evaluation results for various configurations.

main scarce for most languages, and word- and
phrase-level alignment continue to be active re-
search topics. Assuming sufficient training mate-
rial, statistical translation quality still leaves much
to be desired; and probabilistit. P experience in
general suggests that one must expect ‘ceiling’ ef-
fects on system evolution. Statistioal research
has yet to find a satisfactory role for linguistic
analysis; on its own, it does not further our un-
derstanding of language.

Progress on combining rule-based and data-

driven approaches toT will depend on a sus-
tained stream of state-of-the-artyiT-oriented

Machine Translation is back in fashion, with Imgws_tl_c_s _research. ) The Norw_eg_|a|110-
.GON initiative capitalizes on linguistic pre-

data-driven approaches and specifically Statisti=>~

cal MT (SMT) as the predominant paradigm— cision for high-quality translation and, ac-
both in terms of scientific interest and evalu-co_rd'_ngly’ puts scalable, general—purpose lin-
ation results inMT competitions. But (fully- guistic resources—complemented with advanced

automated) machine translation remains a hard—StOCh""StIC components.—at its core. Despite fre-
if not ultimately impossible—challenge. The quent cycles of overly high hopes and subsequent

task encompasses not only all strata of Iinguis-d'S'III_us“_)nmet?t’ MT In c;)ur V|edwk|s thledtyp(; of
tic description—phonology to discourse—but in :alpp |c’at|on that may emand knowledge-heavy,
the general case requires potentially unIimiteddeep approaches toLP for its ultimate, long-

knowledge about the actual world and situatecxterm success: _,MUCh like Riezler & ngwel! I
language use (Kay, 1980, 1997). Although the(2006) and Llitjos & Vogel (2007)—Dbeing faith-

majority of commercialMT systems still have Lulbm(ljnorlty mﬁmbers ourgte]zlves—we gpproacfh a
large sets of hand-crafted rules at their core (of-Y°" MT architecture with a semantic transter

ten using techniques first invented in the 1960§3ackbone as our vantage point. Plurality of ap-

and 1970s)MT research in the once mzalinstreamlormJlChes to grammatical des_cription, reu_sabi_lity
linguistic tradition has become the privilege of aqf component pgrts, and the interplay of linguis-
small, faithful minority tic and stochastic processes are among the strong

Like a growing number of colleagues, we ques-pomtS of theLOGON system.
tion the long-term value opurely statistical (or In the following, we provide a brief overview
data-driven) approaches, both practically and scief the LOGON architecture {2) and a bit of theo-
entifically. Large (parallel) training corpora re- retical reflection on the role of probability theory

1 Background—Motivation



Norwegian NO — EN Engien set | # | words | coverage| strings
Transfer -—
Treebank (MRS) Treebank ‘

I | JHy | 2146 | 12.6 64.8 266
TMRsl JHy | 182 | 117 | 632 | 1146
[ v Y

Norwegian | ___, || o iojer | —— | English Table 1: LOGON development and held-out corpora (for

Analysis MRS Re-Rank MRS | Generation the Jotunheimersegment). Average string length and end-
(LFG) LSS | +—— | HPsG) to-end coverage on the two sets are comparable, but the av-
Ay Ay erage number of candidate translations is higher on the de-

| interactive Use | | Batch Processing | velopment data.

Figure 1: Schematic system architecture: the central conshows a schematic view of th&®GON architec-
troller brokers intermediate representations among theeth . . .
processing components, accumulating candidate tramssati ture; eren et al. (2004) provide a more detailed
and, ultimately re-ranking the-best list. overview of theLOGON approach.

o _ _ ) In a nutshell, the role of the rule-based compo-
in finding optimal translations§@). Section§4  nents inLocon is to delineate the space of gram-
through§ 6 review component-internal ranking in- matically and semantically coherent translations,
the LOGON pipeline. Finally,§ 7 outlines our ap- yhjle the ranking of competing hypotheses and
proach to end-to-end re-ranking, including émpir- ;imately the selection of the best candidate(s) is

ical results for various setups. We conclude withje\yeq as a probabilistic task. Parsing, transfer,
reflections on accomplishments so far and ongoz g realization each produce, on average, a few

ing work in§ 8. hundred candidate outputs for one input. Hence,
exhausting the complete fan-out combinatorics
can be prohibitively expensive, and typically we

The LOGON consortium—the Norwegian uni- limit the number of hypotheses passed down-
versities of Oslo (coordinator), Bergen, andstream to a relatively smat-best list. For all
Trondheim—has assembled a ‘deept proto- results reported presently, the fan-out branching
type over the past four years, expending aroundactor was limited to a maximum of five output
fifteen person years on its core translation systenrandidates from parsing and (within each branch)
The LOGON pipeline comprises grammar-basedtransfer; because there is no further downstream
parsing, transfer of underspecified Minimal Re-Processing after generation, we can afford more
cursion SemanticsMRS, Copestake, Flickinger, candidate realizations per inpuRs—for a total
Pollard, & Sag, 2005), and full tactical gen- Of Up to5 x 5 x 50 = 1250 distinct fan-out out-
eration (aka realization). NorGram, the anal-comes. However, it is quite common for distinct
ysis grammar, is couched in therG frame- fan-out paths to arrive at equivalent outputs, for
work and has been continuously developed agxample where the same modifier attachment am-
the University of Bergen since 1999. Con- biguity may be present in the source and target
versely, the generation grammara (Flickinger, ~ language.

2000), builds on thedPsG theory of grammar, Both our linguistic resources, search algo-
and has been under developmentcatl Stan- rithms, and statistical models draw from contem-
ford since around 1993. While both analysis andporary, state-of-the art techniques and ongoing re-
generation deploy general-purpose linguistic re-search in larger, noMT communities. In this re-
sources and processing tool9GON had to de- gard, theLOGON demonstrator provides a novel
velop itsMRrstransfer formalism and Norwegian— blending of approaches, where the majority of its
English (NoEn) transfer grammar from scratch.component parts and linguistic resources have in-
The transfer engine—unification-based, resourcedependent value (and often are used in parallel in
sensitive rewriting ofIRS terms—constitutes a other research efforts and applications).

new generic tool (that is already used for other The consortium circumscribed its domain and
language pairs and even nen-tasks), but most ambitions by virtue of a reference corpus of
of the NoEn transfer grammar is specific to thearound 50,000 words of running text, six pub-
LOGON language pair and application. Figure 1llished tourism booklets on back-country activities

2 LOGON—Hybrid Deep MT
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Figure 3: Abstract fan-out tree: each processing compo-

. 17-0¢t-2005 (20:08 h) — 18-jan-2007 (0307 h) nent operates non-deterministically, and distinct inmats,
Figure 2: Evolution of end-to-end coverage over time: per-j, principle, give rise to equivalent outputs.

centage oflotunheimernputs with at least one translation.

results of parsing and choose the topmost can-

in Norway. In addition to one original transla- jiqaie call itF,. Then consider all the results

tion, we contracted up to two additional referencemc invoking transfer onF}, and choose the one

translations; about ten per cer?t of the parallel O anked highestf;. And finally choose the high-
pus was held out for evaluation. Table 1 sum-

. . o est ranked realization; of F;. We will refer to
marizes core metrics of the training and test sec;

this output as thdirst translation correspondin
tions of theJotunheimemooklets, the largest seg- to the topp branch in Figure 3 i P d

ment and the one for which three reference trans- The second possibility is to try to find tieost
lations are available. For model training and evaI-Iikely path through the fan-out tree

i.e. try to
uation, about 670 of the Norwegian inputs and a”maximize' v
(~6,000) English references were manually tree- '
banked (see below). arg max P(ey|E;)P(E;|F;)P(F;| f)

Aiming primarily to gauge the utility of its 0.5,k

‘pure’ setup (rather than for a completer solu- The two approaches do not always yield the
tion) at the current stage, the consortium did Nt me result. Take as an example a sentehce
‘diffuse’ its linguistic backbone with additional | ih two different analysesF, and Fy, where
robustness measures. Accordingly, the overall efg,o main difference between the two is that a par-
ror rate is the product of per-component ermorsyqar word is ambiguous between a noun read-

and gradually building up end-to-end coverage—Ing in 7, and a verb reading iff. If the noun

specifically harmonizing semantics for a wide va-p 4 many alternative realizations in the target lan-

riety of constructions cross-linguistical_ly—was a guage while the verb has few, the most likely path
major part of system development. Figure 2 de-

k y ) might be one that chooses the verb, i.e. passes
picts the evolution of end-to-end coverage in thethrougth.

past year and a half. Upon completion of ac- g thirg possibility for the end-to-end ranking
tive development, system performance on heldsg ¢ try to find themost likely translationi.e.

out data was determined retroactively (for ear-

lier versions). In terms of end-to-end coverage argmax > P(ex|E;)P(E;|F;)P(F;|f)

at least, it is reassuring to observe that there are ¢ F; B

few differences between system behavior on de-, . . . .
velopment vs. held-out data: for this domain and! Nis might result in a different top-ranked can-

genre, the finalLOGON demonstrator translates didate than the most likely path in cases where
about’two thirds of its inputs several different paths result in the same output.

Considering PP attachment ambiguities, for ex-
3 Some Theoretical Reflections ample, distinct intermediate semantic representa-

tions (pairs of ;s andF;s) can yield the same
Given our transfer system, where each of the threearget string.
steps fan out, there are several possibilities for Which concept should we try to model? From
adding a stochastic component. What should be theoretical point of view, there are good argu-
maximized, and how? ments for choosing what we have called the first

The first possibility is to rank the different com- translation. It makes sense to try to select the

ponents sequentially, one at a time. First rank thenost likely interpretation of what the producer of



the source sentence has intended independentlyambiguity | # | exact match| five-best

of how it gets translated. If one ir?stead selects 50— 100 | 16 | 34.4 (17.2) | 56.2 (55.0)
the most I|k_er path, or the most Il_kely trans_la- 95 _ 49 28 | 30.4 (21.4) | 62.5 (54.3)
tion, one might select a !ess likely interpretation 10 — 24 43 | 58.1(25.3) | 89.5 (73.9)
of what the speaker had_lntended. _ 9_9 53 | 70.8(35.1) | 96.2 (91.0)
_ Our argume_nt for thélrst translation can be total 140| 53.8 (27.3) | 84.3 (74.3)
illustrated within our earlier example of a word-

level noun vs. verb ambiguity in analysis. The 50 —100 | 16 | 43.7 (17.2) | 81.2 (55.0)
many different realizations of the noun in the tar- 25 — 49 28 | 50.0(21.4) | 78.6 (54.3)
get language may fall into classes of near syn- 10 —24 | 43 | 67.4(25.3) | 90.7 (73.9)
onyms, in which case it does not matter for the 2 —9 53 | 72.6(35.1) | 100. (91.0)
quality of the result which synonym is chosen. total 140| 63.2(27.3) | 90.7 (74.3)

Even though each of the individual realizations . _ . .
Table 2: Evaluation of parse selection with a model trained

has a low probability, it may be a good transla-ith standard feature function templates of the XLE (upper
tion. part, as used iLOGON,) and with a discriminant model

Observe here also that an automatic evaluatioHower part, not yet used). Figures are given for the percent
ge of exact matches and matches among the five top-ranked

measure—measuring the similarities to a set 0gnalyses. Figures in parentheses show a random choice base-
reference translations, like tteeEU metric (Pa- line. Both models were trained on seven of nine treebanked

pineni, Roukos, Ward, & Zhu, 2002)—will favor texts and evaluated on the two remaining texts.
the view of most likely translation We conjec-

ture, however, that a human evaluation will corre- 4 development corpus. Parse selectiondn
spond better to the first translation. GON uses training data from this treebank; all sen-
From a theoretical point of view, it Seems mostiences with full parses with low ambiguity (fewer
correct to go for the first translation. But it pre- o1 100 readings) were at least partially disam-
supposes that we choose the correct interpretqjiguated
tion of the source sentence, which we cannot The narse selection method employed in the
expect to always do. In cases where we have ooy demonstrator uses the stochastic disam-
chosen an incorrect analysis, this might be rey,;qation scheme and training software devel-
vealed by trying to translate it into the target [an-gp64 aiparc (Riezler & Vasserman, 2004). The
guage and consider the result. If all the candi-, - system provides a set of parameterized fea-

date translations sound bad—or have a very 10w,re fynction templates that must be expanded in
probability—in the target language, that can be,ccordance with the grammar or the training set

evidence for dispreferring this analysis. Henceg; hand. Application of these feature functions

information about probabilities from later com- , e training data yields feature forests for both
ponents in the pipeline may be relevant, not fory,e |3heled data (the partially disambiguated parse
overwriting analysis probabilities, but for helping ¢5ests) and the unlabeled data (the full parse
n Se'eCt_'”Q them. ) ] ) forests). These feature forests are the input to the
We will in the following first review howLO-  giavistical estimation algorithm, which generates
GON employs component ranking for choosing 5 property weights file that is used to rank solu-
the first translation, and then consider an end-tosjons.
end re-ranking which attempts to find the most  qng of the challenges in applying the probabil-
probable translation, by directly estimating theity model to a given grammar and training set is

posterior translation probability(e f). the choice of appropriate feature functions. We
have pursued two approaches for choosing fea-
ture functions. In the first approach, we started
In a sister project taOGON, the TREPIL project,  with a significant subset of the predefined feature
a toolkit for building parsebanks afFG anal- function templates and expanded each of them
yses is being developed (Rosén, De Smedt, &n all possible ways that would result in a non-

Meurer, 2006). This toolkit, called the=G Parse- zero value on at least one parse in the train-

banker, was used to build a treebank for tloe

4 Parse Selection



{ MRS ranking in isolation, but in lieu of such data,
prpstn_m[MARG _recommend.v] we can contrast end-to-end system performance
:;?Z?ER%eom_jﬁ}’k[gﬁfl pron, ARG2 -hike.n] on the JH test set. When passing an unranked,
_around_p[ARG1 _hike_n, ARG2 _source_n] random selection of five transfer outputs down-
g‘ggg‘[ﬁAté([BAlRSvgtésrsvugﬁ—”;%z source.n] stream, the success rate in generation drops to
def q[ARGO _waterway.n] i ) 82.7 per cent (down from 86.5 per cent in ranked,

} five-best mode). Restricting the comparison to

the 109 items that translate in both configurations,
Figure 4: Variable-free reduction of the MRS for the utter- gyr BLEU score over thdfirst translation drops
ance ‘We recommend a hike around the waterway'’s sources’
from 37.41 to 30.29.
ing set; this could be done automatically. The

second approach is motivated by the hypothe

sis_ that discriminants, as used in ma_n_ual anNORealization rankings the term we use for the task
tation (Carter, 1997), represent promising alter-o giscriminating between multiple surface forms

native fegt_ure functions to the predefined tem'generated for a given input semantics. By adapt-
plates. Initial tests (see table 2) show that the d'srng methods previously used for parse selection,

criminant approach (which is not yet used in the,ye gre able to use treebank data for training a dis-
LOGON system) scores better than the templategiminative log-linear model for the conditional

based approach. probability of a surface realization given an in-
. put MRs. Traditionally, however, the standard ap-

5 Ranking Transfer Outputs proach to tackling this problem of indeterminacy

in generation is to use antgram language model

While wrs formulae are highly structured graphs, | o e & Knight, 1998; White, 2004: inter
Oepen & Lgnning (2006) suggest a reduction into” . . .
. alios). Candidate strings are then ranked accord-
a variable-free form that resembles elementary . L, . o o
dependency structures. For the ranking of transfeIng to their ‘fluency’, indicated by the probabili-
P y ' 9 ies assigned by them. As a baseline for our dis-

outputs,MRSs are broken down into basic depen- .~ .~ . .
. - : riminative model, we trained a tri-gram language
dency triples, whose probabilities are estimated’

) model on an unannotated version of the British
by adaptation of standare-gram sequence mod- National Corpus ENC), containing roughly 100
eling techniques. The actual training is done us- P ’ 9 gnly

) . ) million words. As in the case of th@Rs ranker,
ing the freely availableeMu sLm toolkit (Clark- we used theMmu sLM toolkit for training, result-
son & Rosenfeld, 1997). 9,

o __ing in a Witten-Bell discounted back-off model.
Based on a training set of some 8,500 in- )
. . ) When evaluated in terms of exact match accu-
domain MRSs, viz. the treebanked version of

the English translations of the (fuldoGoN de- racy on the Jid development séttheLm ranker

velobment corpus. our target lanauage ,Semanachieves53.2%, which is well above the ran-
) b . P > 9 guag ) dom choice baseline df8.7%. However there
tic model’ is defined as a smoothed tri-gram L .
) . are many well-known limitations inherent to the
model over the reduction o¥iRss into depen- L
. . n-gram approach, such as its inability to cap-
dency triples. Figure 4 shows an example struc: . .
) ) ) ture long-range dependencies and dependencies
ture, corresponding to atotal of ten triples, includ- .
. ) ) ., between non-contiguous words. More generally,
ing (-around.p, ARGL, _-hike.n). The ‘vocabulary the simplen-gram models are purely surface ori-
of the model comprises some 4,400 distinct se- P P
mantic predicates and role labels, for a total num- 1 gy measures in all our experiments are calculated us-
ber of around 51,000 distinct triples. Similarly, ing the freely availableisT toolkit (in its version 11b).

post-transfer Englisivrss are broken down into 2Note that, when evaluating realization rankers in isola-
tion, we use a different version of the JHdlata set. The

segments of dependency triples and ranked aGzrss in the generation treebank are here always underspeci-
cording to the perplexity scores assigned by thé@ed with respect to_information structure, such as pe_lsm'viz
semantic model tion and topicalization. This means that the level of indete
: minacy is somewhat higher than what is typically the case
We lack a transfer-level ‘treebank’ to evaluate within theLocon MT setting.

6 Realization Ranking



model | exact match | five-best| WA that can be brought to bear in choosing the ‘best’
BNC LM 5324 7881 | 0.882 tranzlat_lon,hfor exampltéI a measure of hovzj_muckll
Log-Linear 72 28 8459 | 0.927 reordering has occurred among corresponding el-
ements in the source and target language, or the

Table 3: Performance of the realization rankeBNC LM degree of harmony between the string lengths of
is then-gram ranker trained on the raw text version of the

BNC. Log-Linearshows 10-fold cross-validated results for the Sou,rce and target. . .

the discriminative model trained on a generation treebank, Log-linear models provide a very flexible

including the LM scores as a separate feature. framework for discriminative modeling that al-

_ _lows us to combine disparate and overlapping
ented and thereby fail to capture dependenciegyices of information in a single model without

that show a structural rather than sequential regur'unning the risk of making unwarranted indepen-

larity. All'in all, there are good reasons to expectyance assumptions. In this section we describe a
to devise better realization rankers by using modsy,,je| that directly estimates the posterior trans-

els with access tp grammatical s_tructure. Vell- ation probability Py (¢| f), for a given source sen-
dal, Oepen, & Flickinger (2004) introduced the (o\ce r and translatiore. Although the re-ranker

notion of ageneration treebankwhich facilities |\ o qescribe here is built on top of a hybrid base-

the training of discriminative log-linear models e gystem, the overall approach is similar to that

for realization ranking in a similar fashion as for yagcriped by Och & Ney (2002) in the context of
parse disambiguation. For further background ory,,+

log-linear models, seg7.

Our discriminative realization ranker uses alLog-Linear Models A log-linear model is
range of features defined over the derivation treegiven in terms of (a) a set apecified featurethat
of theHPsGlinguistic sign, recording information describe properties of the data, and (b) an associ-
about local sub-tree configurations, vertical dom-ated set ofearned weightshat determine the con-
inance relationsyn-grams of lexical types, and tribution of each feature. One advantage of work-
more (Velldal & Oepen, 2006). When trained anding with a discriminative re-ranking setup is that
tested by ten-fold cross-validation on a generathe model can use global features that the baseline
tion treebank created for the JHlata set, this system would not be able to incorporate. The in-
model achievesr0.28% exact match accuracy, formation that the feature functions record can be
clearly outperforming the.-gram-basedm by a  arbitrarily complex, and a given feature can even
good margin (again, the random choice baseline igself be a separate statistical model. In the fol-
28.7%). However, by including the scores of the lowing we first give a brief high-level presenta-
LM as an additional feature, we are able to furthetion of conditional log-linear modeling, and then
boost accuracy up tt2.28%. Table 3 summarizes we go on to present the actual feature functions in
the results of the two different types of realiza- our setup.
tion rankers. The evaluation also includes exact Given a set ofn real-valued features, each pair
match accuracy within the five top-ranked candi-of source sentencgand target senteneeare rep-
dates, as well as average sentence-lexatl ac- resented as a feature vectff, ¢) € R™. A vec-
curacy(WA), which is a string similarity measure tor of weights\ € R™ is then fitted to optimize

based on edit distance. some objective function of the training data. For
_ the experiments reported in this paper the weights
7 End-to-End Re-Ranking are fitted to maximize the conditional (pseud®

Secti 3 alread ‘ derati likelihood (Johnson, Geman, Canon, Chi, & Rie-
>€C lon§3 alrea y Suggesis one considera 'Onzler, 1999) In other words, for each input source
in favor of re-ranking the complete list of can-

. . . sentence in the training data we seek to maximize
didate translations once fan-out is complete:

component-internal probabilistic models are falli-  3For estimation we use theabm open-source toolkit
ble. Furthermore, besides analysis-, transfer-, angMalouf, 2002), using itimited-memory variable metrias

lizati int | inf fi th ddi the optimization method. As is standard practice, the model
r_ea Izaton-in .erna Informaton, _ere are addi-jg regularized by including a zero-mean Gaussian prior on
tional properties of each hypothesized pgire)  the feature weights to reduce the risk of overfitting.



the probability of its annotated reference trans-gram language model trained on teC) of can-
lation relative to the other competing candidatesdidate translations;, as an independent indicator
However, for future work we plan to also experi- of output fluency.
ment with optimizing the scores of a given eval- pisSTORTION Elementary predicationsggs)
uation metric (e.gBLEU) directly, following the in ourmRsare linked to corresponding surface el-
Minimum Error Rate approach of Och (2003).  ements, i.e. sub-string pointers. Surface links are
The three most fundamental features that ar@reserved in transfer, such that post-generation,
supplied in our log-linear re-ranker correspond tofor eacher—or group ofeps, as transfer need not
the three ranking modules of the baseline systenbe a one-to-one mapping—there is information
as described in Sectiori4, §5, and§6 above. about its original vs. its output sub-string span.
In other words, these features record the scores dfo gauge reordering among constituents, for both
the parse ranker, th@rs ranker, and the realiza- the generator input and output, eaghis com-
tion ranker, respectively. But our re-ranker alsopared pairwise to othegprs in the sameirs, and
includes several other features that are not part adach pair classified with regard to their relative
the baseline model. surface positions. Comparing the input and out-

) put MRS, we consider corresponding pairs e
Other Features Our experiments so far have 5is. the distortion metric for a pair of aligned

taken into account another eight properties of the-os measures their class difference, where for ex-
translation process, in some cases observing iy e o change from overlapping to adjacent is

ternal features of individual components, in oth-penajized mildly, while inverting a precedence re-
ers aiming to capture global information. The fol- |45 comes at a higher cost. Finally, the distor-

lowing paragraphs provide an informal overview s, metric for a pair ofvRrss is the sum of their

of th_ese additional features in our log-linear re'perEPdistortion metrics, normalized by the total
ranking model. N number ofEP pairs.

LEXICAL !DROBABILITIES One additional STRING HARMONY Seeing typological simi-
feature type in the log-linear model correspondqarity between Norwegian and English, much like

to lexical translation probabiliies These are for the distortion metric, we assume that there are

estimated on the basis of a small corpus Ofsystematic correspondences at the string level be-

Norwegian—English parallel texts, comprising tween the source and its translation. To enable

; i i ++
?2,356dp1:31|rs of dallg_ned sen;enlc_f’eﬁjrst,elz_A b hthe re-ranker to take into account length effects,
IS used for producing word alignments in both, o ey de the ratio of word countg|/|f|, as a

d|rect|9ns, i.e. using both_ languages as source ang .1 e in the model.
target in turn. On the basis of these alignments we o
TRANSFER METRICS Two additional fea-

then estimate a maximum likelihood translation . ) .
o . . tures capture information about the transfer step:

table, again in both directior's Finally, for each .
the total number of transfer rules that were in-

bi-directional sentence paie, /) and(f,e), the )
. . .voked (as a measure of transfer granularity, e.g.
corresponding feature in the end-to-end ranker is - :
) where idiomatic transfer of a larger cluster of
computed as the length-normalized product of all . i
o e EPs contrasts with stepwise transfer of component
pairwise word-to-word probabilities.

EPs), as well as the ratio &P counts,|E|/|F|.
STRING PROBABILITY Although a part of the ) [EI/|F]

" o . SEMANTIC DISTANCE Generation proceeds
(conditional) realization ranker already, we in-.
. o . . in two phases: a chart-based bottom-up search
clude the string probability (according to the tri- . o . ;
enumerates candidate realizations, of which a fi-

“0Of these, 9,410 sentences are taken fromubeon  nal semantic compatiblity test selects the one(s)

development data, while an additional 12,946 sentenceghoseMRS is subsumed by the original generator
are from the English-Norwegian Parallel Corpus (Oksefjell . . .
1999). 9 g pus (Oksef inputMRs (Carroll & Oepen, 2005). Given an im-

5The ML estimation of the lexical probabilities, as well perfectinput (or error in the generation grammar),

as the final word alignments produced from the output ofjt js possible for none of the candidate outputs
Glzat+, are carried out using the training scripts provided

by Phillip Koehn, and as distributed with the phrase-baseoto fulfill the semantlc_compatlbllty test. In this
sMT module Pharaoh (Koehn, 2004). case, the generator will gradually relstRs com-



parison, going through seven pre-defined levels set| # |chance first | LL | top |judge

of semantic mismatch, which we encode as oneéj 11391] 34.18140.9544 1049.8d -
integer-valued feature in the re-ranking model. d ’ ’ ' '

JH¢ | 115| 30.84 |35.67/38.92/45.741 46.32
Training the Model While batch translating, Table 4: BLEU . _ y ; _

H _ lable 4: SCores 1or various re-ranking con |gurat|0ns,
th? LOGON controll_er records al_l candidate tra_ns computed over only those cases actually translatetd®@y
lations, intermediate semantic representationsgoN (second column). For all configurations, BLEU results
and a large number of processing and resourcen the training corpus are higher by about four points.
consumption properties in a database, which we
call aprofile (in analogy to software engineering; hen-best i btained f ¢
Oepen et al., 2005). Given the system configuraE en-best lists obtaine rorR » 5 x 50 fan-out.
tion summarized in Sectiorfs2 through§ 6, we In all cases, scoring has been reduced to those
use the JH batch profile to train and optimize a inputs actually translated by the®GON system,

log-linear re-ranker. The experimentation infras-€: 64-8% and63.2% of the development (Jp)
tructure, here, is essentially the same as in ou

{;md held-out (JF) corpora, respectively. As a
discriminative realization ranker—the combina-

baseline measure, we used random choice of one

tion of the[incr tsdb()] profiler, theTADM maxi- output in each _cont_ext (ayeraged over twenty it-
mum entropy toolkit, and tools for efficient cross- erations), resulting in (e_St'mabIB)LEU scores of
valiation experiments with large data and fe<';1ture?’4'18 and30.84, respectively.
sets (Velldal, 2007). As an upper bound on re-ranking efficacy, Ta-

For training purposes, we mechanically ‘an-ple 4 provides two ‘oracle’ scores: the first, la-
notated’ candidate translations by means of theeledtop, is obtained from selecting translations
sentence-leveNEVA string similarity measure, with maximal NEVA scores, i.e. using sentence-
applied to actualoGON outputs compared to JH  |evel NEVA as a proxy for corpus-levelLEU. The
reference translationsiEVA is a reformulation of  second, labelegudge reflects the annotations of
BLEU that avoids many of the problems associated human judge on the JHheld-out data: con-
with applying BLEU at the sentence level, and is sidering all available candidates, a native speaker
computed as the arithmetic mean of the raw  of (American) English and near-native speaker
gram precision scores (Forsbom, 2003). For eachf Norwegian, in each case, picked the transla-
source sentence, we mark the translation(s) withion judged most appropriate (or, in some cases,
maximumNEVA score (among all candidate out- |east awful). Oracl®LEU scores reach9.89 and

puts for this input) as preferred, thus construct-46.32, for JH; and JH, respectively.
ing an empirical distribution where estimation of

log-linear model parameters amounts to adjust- Finally, the column labelefirst in Table 4 cor-

ing conditional probabilities towards higheeva ~ f€Sponds to thdirst translation concept intro-
scores. duced in§ 3 above, and theL column to our log-

Seeing that the model includes diverse feglinear r_e—_ranker (maximizing tHeg—IikeIihoodof
ture types—probabilities, perplexity values, the training (_jata). Bo'Fh clearly improve over the
un-normalized log-linear scores, and non-random ch0|c§ basellne,_ but the re-ranker out-
probabilistic  quantities—feature values areP€forms the first translation approach by a large
normalized into a comparable range, usingmargln—thus returning on the investment of ex-

min-max scaling. The hyper-parameters of thelrd fan-out and end-to-end re-ranking. prever,
model—the TADM convergence threshold and at BLEU scores 0f44.10 and 38.92, respectively,

variance of the Gaussian prior—were optimized®Ul current re-ranking setup also leaves ample
by ten-fold cross-validation on the training "°°M for further improvements towards the ‘or-

cor acle’ upper bound. We anticipate that fine-tuning
pus. ) . . "

the log-linear model, inclusion of additional fea-
Empirical Results Table 4 summarizes end- tures, and experimentation with different estima-
to-end system performance, measuredsiEU  tion techniques (see below) will allow us to nar-
scores, for various strategies of selecting amongow this differential further.




8 Conclusions—Outlook nate candidates is continuous (rather than abso-
lute), and we have started experimentation with
The future ofMT has been (mis-)diagnosed asa graded empirical distribution, adapting the ap-
‘just around the corner’ since the beginning of proach of Osborne (2000) to the re-ranking task.
time, and there is no basis to expect a breakFinally, in a parallel refinement cycle, we aim to
through in fully-automatediT in the foreseeable contrast our currentL() re-ranking model with
future. But yet we see progress along the wayMinimum Error Rate {ER) training, a method
specifically in the sustained development of largethat aims to estimate model parameters to directly
scale, general-purpose language technology anabtimizeBLEU scores (or another quality metric)
its ever tighter integration with refined stochasticas its objective function.
techniques. Trading coverage for increased output quality

Among the main results of the Norwegian may be economic for a range of tasks—say as
LOGON initiative is its proof-of-concept demon- & complement to other tools in the workbench
strator for quality-oriented, hybrisT grounded ©f & professional translator. Our re-ranking ap-
in independently developed computational gram{roach, with access to rich intermediate represen-
mars. The t|ght Coup”ng of hand-built |inguis_ tationS, prObabiIitieS, and confidence measures,
tic resources results in anT pipeline where, to a Provides a fertile environment for experimenta-
very high degree, all candidate translations are (afjon on confidence-centrie/T. Applying thresh-
related to the source utterance in a systematic—0lding techniques on the probability distribution
albeit at times unlikely—way and (b) grammat- of the re-ranking model, for example, we plan
ically well-formed. Combining am-best beam t0 experimentally determine how much transla-
search through the space of fan-out combinatoric§on quality can be gained by making the can-
with stochastic rankers at each step, as well adidate selection more restrictive. Alternatively,
with discriminative end-to-end re-ranking yields ©ne can imagine applying yet another model to
a flexible So|uti0n, Oﬁering a clear precision VS. this taSk, a classifier dECiding on which candidate
efficiency trade-off. For its bounded domain (andtranslations constitute worthy outputs, and which
limited vocabulary of around 5,000 lexemes), theare best suppressed.

LOGON system succeeds in translating about two The availability of off-the-shelmT tools has
thirds of unseen running text, wWheBREU scores greatly contributed to re-energized interest and
and project-internal inspection of results suggest ®ogress inMT in the recent past. We believe
high degree of output quality. This configuration that advances in hybrieT would equally benefit
could, in principle, be an interesting value propo-from a repository of general-purpose, easy-to-use
sition by itself—as a tool to professional trans-linguistic resources. Except for the proprietary
lators, for example. A more systematic, humanXLE, all LOGON results—treebanks, grammars,
judgment study of system outputs (for various Seand software—are available for public download.
lection strategies) is currently underway, and WeR oferences

expect results to become available in June this
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