Random Indexing Re-Hashed

Erik Velldal

Department of Informatics
University of Oslo, Norway
erikve@ifi.uio.no

May 12, 2011
Outline

1. Review *random indexing* for dimensionality reduction.
2. Review the notion of *universal families of hash functions*.
3. Show how $1 + 2 = \text{hashed random indexing}$.
Outline

1. Review random indexing for dimensionality reduction.
2. Review the notion of universal families of hash functions.
3. Show how $1 + 2 = $ hashed random indexing.
5. Pilot experiments.
6. Summing up.
Random Indexing: Some History

- Initially intended as a **compact** way of modeling the semantic similarity of words in **word-by-document vector spaces** by Kanerva et al. (2000).

- Much work on RI-based **semantic spaces** has later followed (e.g. Karlgren & Sahlgren, 2001; Sahlgren, 2005).

- Many previous NODALIDA papers on RI;
 - Sahlgren and Swanberg (2001), Gambäck et al. (2003), Sahlgren (2003), Holmlund et al. (2005), Kann and Rosell (2005), Hassel and Sjöbergh (2007),...
Random Indexing: Some History

- Initially intended as a **compact** way of modeling the semantic similarity of words in **word-by-document vector spaces** by Kanerva et al. (2000).

- Much work on RI-based **semantic spaces** has later followed (e.g. Karlsgren & Sahlgren, 2001; Sahlgren, 2005).

- Many previous NODALIDA papers on RI;
 - Sahlgren and Swanberg (2001), Gambäck et al. (2003), Sahlgren (2003), Holmlund et al. (2005), Kann and Rosell (2005), Hassel and Sjöbergh (2007),…

- Velldal (2010) applied RI for **SVM-based uncertainty classification**.
Random Indexing: Some History

- Initially intended as a compact way of modeling the semantic similarity of words in word-by-document vector spaces by Kanerva et al. (2000).

- Much work on RI-based semantic spaces has later followed (e.g. Karlgren & Sahlgren, 2001; Sahlgren, 2005).

- Many previous NODALIDA papers on RI;
 - Sahlgren and Swanberg (2001), Gambäck et al. (2003), Sahlgren (2003), Holmlund et al. (2005), Kann and Rosell (2005), Hassel and Sjöbergh (2007),...

- **Note:** While not here assuming any particular type of data or application, we will assume a vector space model for representation:
 - Given n examples and d features, the feature vectors can be thought of as rows in a matrix $F \in \mathbb{R}^{n \times d}$.
Random Indexing

Goal

- Instead of using the original $n \times d$ feature matrix F, we will construct an $n \times k$ matrix G, where $k \ll d$.

Two Simple Steps

- As a new feature is instantiated, it is assigned a randomly generated index vector: A vector with a fixed dimensionality k, consisting of a small number of -1s and $+1$s, with the remaining elements set to 0.
- The vector representing a given training example (a row in G) is given by simply summing the random index vectors of its features.

Parameters

- The number of non-zeros (ϵ) and the dimensionality (k).
Constructing Feature Vectors: the Standard Approach

Features:

Feature activations:

Feature vector $f(x)$:

Dimensions:
Constructing Feature Vectors: the Standard Approach

Features:

Each feature f_i maps to one dimension i

Feature activations:

Feature vector $f(x)$:

Dimensions:
Constructing Feature Vectors: the Standard Approach

Features: $f_1 f_2 f_3 f_4 f_5 \ldots$

Feature activations: +1 +1

Feature vector $f(x)$: 1 1 5 ... 1

Dimensions: 1 2 3 4 5 ... d

Each feature f_i maps to one dimension i.

As many dimensions as there are features.
Constructing Feature Vectors: the Standard Approach

Features:

Each feature f_i maps to one dimension i

Feature activations:

The mappings correspond to orthogonal vectors.

Feature vector $f(x)$:

As many dimensions as there are features.

Dimensions:
Constructing Feature Vectors: the Standard Approach

Features:
Each feature f_i maps to one dimension i

Feature activations:
The mappings correspond to orthogonal vectors.

Feature vector $f(x)$:
As many dimensions as there are features.

Dimensions:
The feature vector of a given example $f(x)$ is simply the sum of its active features.
Constructing Feature Vectors: the RI Approach

Features:

Feature activations:

Feature vector $f(x)$:

Dimensions:
Constructing Feature Vectors: the RI Approach

Features:
Each feature f_i is randomly mapped to several dimensions, valued -1 or +1.

Feature activations:

Feature vector $f(x)$:

Dimensions:

1 2 3 4 5 ...

$k < d$
Constructing Feature Vectors: the RI Approach

Features:

Each feature f_i is randomly mapped to several dimensions, valued -1 or +1.

Feature activations:

Feature vector $f(x)$:

Dimensions:

The dimensionality is lower than the number of features.
Constructing Feature Vectors: the RI Approach

Each feature f_i is randomly mapped to several dimensions, valued -1 or +1.

The mappings correspond to nearly orthogonal vectors (= the index vectors).

The dimensionality is lower than the number of features.
Constructing Feature Vectors: the RI Approach

Each feature f_i is randomly mapped to several dimensions, valued -1 or +1. The mappings correspond to nearly orthogonal vectors (= the index vectors).

The dimensionality is lower than the number of features.

$f(x) = \text{the sum of the index vectors of } x\text{'s features.}$
RI—an example of Random Projections

► For $F \in \mathbb{R}^{n \times d}$ and a random matrix $R \in \mathbb{R}^{d \times k}$, where $k \ll d$:

$$FR = G \in \mathbb{R}^{n \times k}$$

► The pairwise distances in F can be preserved in G with high probability (the Johnson-Lindenstrauss lemma).

► The rand. index of the ith feature corresponds to the ith row of R.
RI—an example of Random Projections

- For $F \in \mathbb{R}^{n \times d}$ and a random matrix $R \in \mathbb{R}^{d \times k}$, where $k \ll d$:
 \[
 FR = G \in \mathbb{R}^{n \times k}
 \]
- The pairwise distances in F can be preserved in G with high probability (the Johnson-Lindenstrauss lemma).
- The rand. index of the ith feature corresponds to the ith row of R.

A particular advantage of RI

- Constructs G by *incrementally* accumulating the index vectors.
 - Means that F does not need to be explicitly computed.
 - Constructs G directly (dimension reduction only implicit).
 - Can easily add more data without recomputing R and G.
 - Suitable for parallelization and stream processing.
Rethinking the Random Index Representation

- Storage is fairly cheap: For each index vector we only need to keep track of the signs and the positions of the non-zeros.
- Still, for hundreds of thousands or millions of features, it adds up...
Rethinking the Random Index Representation

- Storage is fairly cheap: For each index vector we only need to keep track of the signs and the positions of the non-zeros.
- Still, for hundreds of thousands or millions of features, it adds up...
- Taking a step back, the index vectors are reminiscent of probabilistic data structures like Bloom Filters...
 - Hashed-based data structure for compactly representing set membership.
Rethinking the Random Index Representation

- Storage is fairly cheap: For each index vector we only need to keep track of the signs and the positions of the non-zeros.
- Still, for hundreds of thousands or millions of features, it adds up...
- Taking a step back, the index vectors are reminiscent of probabilistic data structures like Bloom Filters...
 - Hashed-based data structure for compactly representing set membership.
- Idea: We can save resources by having a set of hash functions compute and represent the index vectors.
 - Eliminates the need for storing R.

Erik Velldal
Random Indexing Re-Hashed
Hashing

- For some set of hash keys $U = \{x_1, \ldots, x_k\}$, a hash function h maps each x_i into some smaller set of hash codes $I = \{i_1, \ldots, i_l\}$.
 - $h : U \rightarrow I$ with $|U| \geq |I|$.

- We can use hashing to implement the compression of RI;
 - The keys U are dimensions in the original space.
 - The codes I are dimensions in the lower-dimensional space.
Hashing

- For some set of hash keys $U = \{x_1, \ldots, x_k\}$, a hash function h maps each x_i into some smaller set of hash codes $I = \{i_1, \ldots, i_l\}$.
 - $h : U \rightarrow I$ with $|U| \geq |I|$.
- We can use hashing to implement the compression of RI;
 - The keys U are dimensions in the original space.
 - The codes I are dimensions in the lower-dimensional space.
- Collisions; multiple keys may be mapped to the same hash code.
 - Need to distribute codes as evenly as possible to reduce the noise.
- RI uses one-to-many mappings, so we need multiple hash functions.
Universal Families of Hash Functions

- A method for randomly generating hash functions $h_i : U \rightarrow I$ from a family of functions H that guarantees that the probability of a collision for any two distinct keys is bounded by $1/|I|$.
- On demand, we can randomly select deterministic functions from H that maps the data to indices/codes as if at random.
- There exists several ways of implementing such universal classes...
Multiplicative Universal Hashing (Dietzfelbinger et al., 1997)

- A particularly simple class of mappings from \(k \)-bit keys to \(l \)-bit indices.
 - Let \(U = \{0, \ldots, 2^k - 1\} \) and \(I = \{0, \ldots, 2^l - 1\} \).
 - Let \(A = \{a \mid 0 < a < 2^k \text{ and } a \text{ is odd}\} \).
 - Now \(H_{k,l} = \{h_a \mid a \in A\} \) defines a 2-universal family where
 \[
 h_a(x) = \left(ax \mod 2^k \right) \div 2^{k-l} \quad \text{for } 0 \leq x < 2^k
 \]
 - For two distinct keys \(x \) and \(y \) in \(U \), \(h_a \) obeys
 \[
 \text{Prob}(h_a(x) = h_a(y)) \leq \frac{1}{2^{m-1}}
 \]
 - By randomly picking a number \(a \in A \) we generate a new hash function \(h_a \) from the set of \(2^{k-1} \) distinct hash functions in \(H_{k,l} \).
 - Efficient bit-level implementation of modulo and integer division.
Hashed Random Indexing

- Any set of random index vectors with ϵ non-zeros in each can now be implicitly represented by a set of ϵ functions $\{h_{a1}, \ldots, h_{a\epsilon}\} \subset H_{k,l}$.

- Half of the functions indicate -1s and the other $+1$s.
Hashed Random Indexing

- Any set of random index vectors with ϵ non-zeros in each can now be implicitly represented by a set of ϵ functions $\{h_{a1}, \ldots, h_{ae}\} \subset H_{k,l}$.

- Half of the functions indicate -1s and the other $+1$s.

- Eliminates the $R \in \mathbb{R}^{d \times k}$ random matrix:
 - Store ϵ integers instead of the $d\epsilon$ signed positions minimally required otherwise.
 - Can compute $FR = G$ without explicitly representing neither F or R.
Hashed Random Indexing

- Any set of random index vectors with ϵ non-zeros in each can now be implicitly represented by a set of ϵ functions $\{h_{a^1}, \ldots, h_{a^\epsilon}\} \subset H_{k,l}$.
- Half of the functions indicate -1s and the other $+1$s.
- Eliminates the $R \in \mathbb{R}^{d \times k}$ random matrix:
 - Store ϵ integers instead of the $d\epsilon$ signed positions minimally required otherwise.
- Can compute $FR = G$ without explicitly representing neither F or R.
- Better support for parallelization:
 - The only knowledge that needs to be shared is the seed numbers.
Caveats

- Random projection methods (such as RI) are often applied for reducing memory load and computational cost. . .

- However, if your original space F is very sparse, the dimensionality reduction might give you the opposite effect.
Caveats

- Random projection methods (such as RI) are often applied for reducing memory load and computational cost...

- However, if your original space F is very sparse, the dimensionality reduction might give you the opposite effect.

- Why?

 - Because the reduced space G will then be much more dense than F,

 - and the cost of storage and standard vector operations depend not on dimensionality alone, but on the number of non-zero elements.

 - Zero-valued elements can be ignored.
Pilot Experiments with Applying HRI

- Joint work with Lilja Øvrelid (University of Oslo) and Fredrik Jørgensen (Meltwater News).
- Two SVM-based classification tasks with large feature spaces:
Pilot Experiments with Applying HRI

- Joint work with Lilja Øvrelid (University of Oslo) and Fredrik Jørgensen (Meltwater News).

- Two SVM-based classification tasks with large feature spaces:
 - Stacked dependency parsing (Maltparser) on the Tiger treebank:
 - Features: $500,000 \rightarrow 16,384$ ($\epsilon = 4$)
 - UAS: $90.15 \rightarrow 90.00$
 - LAS: $87.83 \rightarrow 87.65$
 - Uncertainty detection on the CoNLL-2010 shared task data:
 - Feature reduction: $670,000 \rightarrow 8,192$ ($\epsilon = 4$)
 - Sentence-level F_1: $86.78 \rightarrow 86.91$
Pilot Experiments with Applying HRI

- Joint work with Lilja Øvrelid (University of Oslo) and Fredrik Jørgensen (Meltwater News).
- Two SVM-based classification tasks with large feature spaces:
 - Stacked dependency parsing (Maltparser) on the Tiger treebank:
 - Features: 500,000 → 16,384 (ε = 4)
 - UAS: 90.15 → 90.00
 - LAS: 87.83 → 87.65
 - Uncertainty detection on the CoNLL-2010 shared task data:
 - Feature reduction: 670,000 → 8,192 (ε = 4)
 - Sentence-level F1: 86.78 → 86.91
- Feature space reduced by up to two orders of magnitude without statistically significant differences in classifier accuracy!
Summing up:

- Random Indexing:
 - Incremental random projection method.
 - Reduced and bounded dimensionality.
 - No need to explicitly represent the full input matrix.
Summing up:

- **Random Indexing:**
 - Incremental random projection method.
 - Reduced and bounded dimensionality.
 - No need to explicitly represent the full input matrix.

- **Hashed Random Indexing:**
 - Efficient reformulation of RI.
 - No need to explicitly represent the random vectors.
 - Rely on universal hashing instead.
Summing up:

- Random Indexing:
 - Incremental random projection method.
 - Reduced and bounded dimensionality.
 - No need to explicitly represent the full input matrix.

- Hashed Random Indexing:
 - Efficient reformulation of RI.
 - No need to explicitly represent the random vectors.
 - Rely on universal hashing instead.

- Hashing—an emerging trend in NLP!
 - Several recent studies the use of hashing for scaling up models.
 - Locality sensitive hashing, sketching, generalized bloom filters, hash-kernels, the hashing-trick, random feature mixing.
 - The relation to HRI further discussed in Velldal (2011).

